跳到主要內容

[野人獻曝] Google App Engine ...... 的踩雷

最近因為要把用 Go 寫的一些 API 搬到專用平台跑又不想花錢,
想到 App Engine 有免費方案,
所以看了一下就先搬一兩隻進去跑了一個禮拜後,
昨天好奇瞄了一下帳單後大吃一斤,
發現才跑一個星期就有 16 鎂的帳單!

再仔細翻一下文件發現這其中的奧秘......

App Engine 分成兩種運作環境,
一為標準,另一個則為彈性。
前者有提供免費方案,依照選擇的類型不同,可能會有一天 28 或 9 個的免費時數可用;
後者完全沒有免費方案,一開下去就立刻算錢。
而我用的正是彈性,所以一開下去就馬上燒錢 Orz

話說回來了,到底標準和彈性環境有什麼差別?

標準環境的特色:

  • 使用的程式語言版本基本按照 App Engine 要求。以 Go 為例,他該死的就只支援到 1.16 ,想用 1.17 以上的版本,你只能使用彈性環境。
  • 有免費方案(不是重點
  • 運作系統規格只有籠統的 F1 / B1 這種讓你選,就算想要記憶體多一點你也只能選更高的等級。
  • AutoScaling 只能設定標準由 App Engine 自行控制
  • 想在運作環境裝一些額外的東西嘛......應該是不行。

彈性環境的特色:
  • 可以自己寫 Dockerfile ,所以要什麼東西用什麼語言環境,你自己決定
  • 沒有免費方案(依然不是重點
  • 運作所需的 CPU 核心和記憶體數量可以自訂,只要符合基本要求即可
  • AutoScaling 機制可以手動也可以自動控制
  • 可以 SSH 登入,想查什麼東西還蠻方便的說
所以你知道為什麼彈性環境沒有免費方案了吧(眼神死

======================

不過根據使用和昨天翻文件下來,
我覺得 App Engine 彈性環境遠比 AWS 的 ECS Fargate 更懶人包。
前者只需要專注在程式撰寫和設定所需運作的環境,基本上沒什麼事要做了;
但後者除了上述的東西外,
還需要自己設定從 VPC / Security Group / Load Balancer 等一狗票東西,
老實說還挺麻煩的。

======================

不過地雷還是有,
在寫 App Engine 的 app.yaml (運作環境設定檔)時,
關於 auto_scaling 的相關設定必須要特別注意,
如果沒特別宣告的話,
會讓你的服務可能一開始就開出兩個 instance 運作,
在只是實驗的狀況下可能會莫名噴出一堆成本。

參考文件:

留言

科技島寫道…
Hello Faryne 您好:
抱歉,冒昧打擾~我是「科技島」社群編輯,科技島這個社群的目的之一,是希望能透過科技業精英前輩現身說法,針對職務心得、工作技巧、從業所得提供經驗分享,讓現正從事科技業或未來想進入科技業的學弟妹們可以更加瞭解這個行業。
剛剛在搜尋Google App文章時,看到您撰寫的《[野人獻曝] Google App Engine ...... 的踩雷》這篇文章,很適合科技島讀者。
不知您是否願意授權我們以『原文原PO,並註明原文作者及出處連結』的方式讓我們轉載於科技島網站,跟科技人一起分享呢?謝謝。
靜待回覆!並附上科技島網站連結,給您參考 :
https://www.technice.com.tw/
聯絡Email:
techniceeditor@gmail.com

這個網誌中的熱門文章

[野人獻曝] 串接 OpenAI 的 Assistant

你就直接把 Assistant 當成你在 ChatGPT 看到的那些 GPT 玩具吧(?), 只是你可以透過 Assistant API 透過程式化來建立你的 GPT 並與你的網站功能結合。 雖然前面說了「用 Assistant API 」,但實際上其實需要以下三個類型的 API 相互結合才能生出一個 Assistant: Assistants API :設定給助手(?)的指示內容、要使用的模型等資訊。在絕大部分場合下,你通常只需要呼叫一次 Assistant 的 Create 方法一次,此後就可以把回傳的 id 記錄下來後用在其他地方。 Threads API : 建立對話串,這個對話串會與前述的 Assistant 相互結合,讓 Assistant 知道要在這個 Thread 開始監聽訊息,並針對指示做出相應的回覆。 Messages API :將使用者輸入的訊息送到 Thread Runs API :使用者送出訊息後,就要呼叫 Create Run ,讓後端知道有工作要做了 以下是其流程: 先呼叫 Assistant API 的 Create ,記得要拿到回傳中最重要的 id ,這會在接下來的步驟中使用到。如果沒什麼特殊狀況的話你可以把這個 id 持久化保存,之後就不用再重做一次這個步驟。 接著 建立一個新的 Thread ,並取回其中回傳的 id。這個步驟你可能會因應不同的使用的而需要頻繁產生。 以上兩個步驟完成後,接著就可以: 建立一條新的 Message ,並將使用者輸入的內容發送至剛才建立的 Thread 中(透過之前建立 Thread 成功所得到的 id) 接著 呼叫 Run API 的 Create ,將建立 Assistant 與 Thread 成功時所取得的 id 帶入後,就會開始根據使用者輸入的內容開始做分析處理。若是忘記呼叫這個 API 你會發現怎麼內容輸入了但卻沒有任何回應。 然後就可以定期去 呼叫取得 Run 資訊的 API ,看看是不是已經處理完畢。只有在 status 是 completed 時,才代表執行完畢。 執行完畢後,就可以 透過 Message API 取得訊息 。 看吧,很簡單吧? ㄍㄋㄋ,官網沒寫詳細用法只有提供 endpoint 資訊。害我先按照自己的想法寫出一個雛形發覺怎麼跑不起來一邊確認一邊問 ChatGPT...

[野人獻曝] 利用 IFTTT Maker 自訂自己的特殊需求(?)

大家應該都知道 IFTTT 是什麼樣的東西, 所以我就不多解釋了。 雖然一般而言, 我們確實只要在某個服務的狀態發生時, 才需要讓 IFTTT 幫我們做些事, (像是我們收藏 Flickr 上某張照片時就自動下載到 Dropbox 之類的。) 但通常可以選的服務就是檯面上有名號的服務。 一旦要做些比較特殊的事時, 嗯......通常直覺下都是自己刻東西來做, 老實說有點麻煩啦...... 所以後來 IFTTT 推出 Maker 這個玩意。 她可以接收來自使用者端的請求, 也可以把請求轉發到另外一個地方, 對某些特殊需求而言, 就不大需要額外刻東西。 以下簡介一下使用流程: 首先先到  https://ifttt.com/maker 找到你的 API Key 並且記下來。 接著你就可以到 Create Recipe 中選擇 Maker 後再選擇 Make a web request 開始新增你的食譜了。 記得 Event Name ,這個東西會在呼叫時用到 另外 Receive Request 只收以下這些參數:v alue1、value2 及 value3   這些參數,其他東西會無視。 發出 request 直接使用 POST https://maker.ifttt.com/trigger/{Event Name}/with/key/{API Key} 然後就看你要讓 IFTTT 接到哪裡即可。 不過要注意一點:因為上面的 Request 只收 value[1-3] 這三個參數,所以你也只能在 Ingridents 選擇這三項東西來用。這個就比較麻煩一點...... 使用大致上應該沒啥問題, 反正就是簡單的 POST 機制, 做些比較沒有敏感性的事情其實還蠻方便的。 不過要拿來控制你家的電氣系統就可能要再三思了(茶

[野人獻曝] 架個 Stable Diffusion WebUI 來生個香香的老婆圖

A.I. 當道後, 什麼以文生文、以文生圖、以文生聲(?)等玩意陸續蹦出來。 別的先不說, 光是以文生圖就有像是 MidJourney 還是 Dall-E 等模型提供相關服務。 而後 NovelAI 自爆自己的以文生圖模型是透過 Danbooru 上收集的圖片所訓練, 外加相關程式碼也不小心外洩後, 你各位紳士們就開始在以文生圖這塊領域中尋找自己的婆了。 不過以上都不是重點, 本文只是想要記錄下 Stable Diffusion WebUI (以下簡稱 SDWebUI)的架設步驟而已。 其實安裝步驟出乎意料的簡單(當然是指在 Google CoLab 上), 只要以下幾個步驟,基本上就能把 SDWebUI 跑起來並且開始生圖: * 確保機器上有 Python 3 以上環境 * 下載 SDWebUI 原始碼,可以直接在 Github 上 clone 下來。 * 下載所需的模型:在產生 ACG 相關圖片的話,目前推薦使用 Anything 或是 Hentai Diffusion 等模型。不過要注意一點:模型檔案越大的話,硬體要求會更高(主要是顯卡的 GPU 和記憶體等級)。如果沒滿足需求的話可能會跑不起來 * 切換到 SDWebUI 目錄,執行以下指令開始跑 SDWebUI 的設定,會在這個步驟安裝其相依的 Python 套件並處理相關設定: COMMANDLINE_ARGS="--exit" REQS_FILE="requirements.txt" python launch.py *  把前面步驟所下載的模型檔案,搬移到 SDWebUI檔案目錄/models,例如 clone 到 /home/user/stable-diffusion-webui 的話,就把模型檔複製到 /home/user/stable-diffusion-webui/models 下。 * 執行以下指令,等待跑完以後,畫面應該會顯示一組 xxx.gradio.xxx 的網址,可以讓自己或朋友連進來玩(網址 72 小時內有效)。如果只是自用的話,也可以用 localhost 的網址開啟服務: COMMANDLINE_ARGS="--share --gradio-debug" REQS_FILE="requirements....