跳到主要內容

[野人獻曝] 讓你的S3上雲端(CDN的意味)

前因太複雜了,所以暫且不表(懶)。
反正後果就是我開了一個CDN來作吐圖的工作。
至於什麼是CDN,請參閱這裡的說明

而這裡嘛,我假設正在看此文的人都有對AWS的服務有些概念,
所以就直接進入正題了。

要弄出一個CDN,
你首先必須要有一組AWS S3的bucket,
並且已經註冊了AWS Cloudfront,
這樣才能繼續以下的作業。
如果可以的話,順便多弄幾個domain names,
稍後會有機會用到(但非必須)。

以上準備工作完成後,
請打開瀏覽器,登入AWS Management Console,
然後跳到Amazon Cloudfront那一頁後,
再選擇Create Distribution
會跳出以下的視窗。
這個視窗是要指示你的資料來源,
主要分成Amazon S3和你自己的來源,
因為本文是講S3的部份,因此請選擇Amazon S3後,
再選擇放檔案的bucket後按下一步。
(至於那個Download和Streaming目前就不用理會了......我想一般個人是不會有機會作Streaming吧......所以只要選Download就好了)


接著出現的視窗會跟你提示一些設定,
主要就是:

  • 要不要設定多個網域:比方說一個頁面如果用了來自一個網域的多張圖片時,因為瀏覽器的限制會導致所有圖片無法同時被載入。因此設置多個網域對應時,會增進頁面讀取速度。
  • 要不要設定log紀錄:這個嘛......基本上我是沒設定啦,因為我也不會去看那些log。如果你有需要的話可以啟用這個功能?
  • 使用的連線類型:基本上就是選HTTP and HTTPS就好,這個選項同時也會包括HTTPS。如果你的內容僅限使用HTTPS時,請選擇HTTPS Only。
  • 是否啟用:基本上是選Enable啦。不過由於在設定完成後,AWS會先進行一次同步作業,所以你也可以先設定Disable。等到好了以後再開啟他。
  • Comments:啊......就是備註,要填不填隨便你啦。
  • Default Root Object:這東西應該就像是找不到資源時所吐的預設值吧?我是沒設定啦,或許哪位可以踹踹看?

按下Continue後,
就會跳到確認頁。
若是確認沒問題的話,按下完成後就可以了。
然後你的cloudfront就會出現這樣的一項了。

如果你在上一步中並沒有設定CNAMEs時,
那麼Domain Name這一欄就是未來吐資源的網域了,
所以未來都要用 {Domain Name}/{資源路徑} 來吐資料了。
至於Status那欄則是代表同步狀態,
剛設定好時通常會停在InProgress一段時間,
等到Deployed出現後就代表搞定了。
那麼簡單又強大的CDN設定就這樣完成了。

話又說回來了,
如果你在第二步時有設定CNAMEs時,
請到你的DNS Hosting增加CNAME,
對應的是第三張圖中的Domain Name,
過一段時間後就可以開始使用了。

以上就是連猴子都會懂的CDN架設過程,
還請大家多多思考是不是可以用在自己的網站上。

那麼~下次的野人獻曝再見了~(揮手)

你看不到的後記:
是說用這個服務的話,可能要先請各位考量一下荷包深度,
不然月底帳單爆掉就好笑了。

留言

這個網誌中的熱門文章

[野人獻曝] 串接 OpenAI 的 Assistant

你就直接把 Assistant 當成你在 ChatGPT 看到的那些 GPT 玩具吧(?), 只是你可以透過 Assistant API 透過程式化來建立你的 GPT 並與你的網站功能結合。 雖然前面說了「用 Assistant API 」,但實際上其實需要以下三個類型的 API 相互結合才能生出一個 Assistant: Assistants API :設定給助手(?)的指示內容、要使用的模型等資訊。在絕大部分場合下,你通常只需要呼叫一次 Assistant 的 Create 方法一次,此後就可以把回傳的 id 記錄下來後用在其他地方。 Threads API : 建立對話串,這個對話串會與前述的 Assistant 相互結合,讓 Assistant 知道要在這個 Thread 開始監聽訊息,並針對指示做出相應的回覆。 Messages API :將使用者輸入的訊息送到 Thread Runs API :使用者送出訊息後,就要呼叫 Create Run ,讓後端知道有工作要做了 以下是其流程: 先呼叫 Assistant API 的 Create ,記得要拿到回傳中最重要的 id ,這會在接下來的步驟中使用到。如果沒什麼特殊狀況的話你可以把這個 id 持久化保存,之後就不用再重做一次這個步驟。 接著 建立一個新的 Thread ,並取回其中回傳的 id。這個步驟你可能會因應不同的使用的而需要頻繁產生。 以上兩個步驟完成後,接著就可以: 建立一條新的 Message ,並將使用者輸入的內容發送至剛才建立的 Thread 中(透過之前建立 Thread 成功所得到的 id) 接著 呼叫 Run API 的 Create ,將建立 Assistant 與 Thread 成功時所取得的 id 帶入後,就會開始根據使用者輸入的內容開始做分析處理。若是忘記呼叫這個 API 你會發現怎麼內容輸入了但卻沒有任何回應。 然後就可以定期去 呼叫取得 Run 資訊的 API ,看看是不是已經處理完畢。只有在 status 是 completed 時,才代表執行完畢。 執行完畢後,就可以 透過 Message API 取得訊息 。 看吧,很簡單吧? ㄍㄋㄋ,官網沒寫詳細用法只有提供 endpoint 資訊。害我先按照自己的想法寫出一個雛形發覺怎麼跑不起來一邊確認一邊問 ChatGPT...

[野人獻曝] 架個 Stable Diffusion WebUI 來生個香香的老婆圖

A.I. 當道後, 什麼以文生文、以文生圖、以文生聲(?)等玩意陸續蹦出來。 別的先不說, 光是以文生圖就有像是 MidJourney 還是 Dall-E 等模型提供相關服務。 而後 NovelAI 自爆自己的以文生圖模型是透過 Danbooru 上收集的圖片所訓練, 外加相關程式碼也不小心外洩後, 你各位紳士們就開始在以文生圖這塊領域中尋找自己的婆了。 不過以上都不是重點, 本文只是想要記錄下 Stable Diffusion WebUI (以下簡稱 SDWebUI)的架設步驟而已。 其實安裝步驟出乎意料的簡單(當然是指在 Google CoLab 上), 只要以下幾個步驟,基本上就能把 SDWebUI 跑起來並且開始生圖: * 確保機器上有 Python 3 以上環境 * 下載 SDWebUI 原始碼,可以直接在 Github 上 clone 下來。 * 下載所需的模型:在產生 ACG 相關圖片的話,目前推薦使用 Anything 或是 Hentai Diffusion 等模型。不過要注意一點:模型檔案越大的話,硬體要求會更高(主要是顯卡的 GPU 和記憶體等級)。如果沒滿足需求的話可能會跑不起來 * 切換到 SDWebUI 目錄,執行以下指令開始跑 SDWebUI 的設定,會在這個步驟安裝其相依的 Python 套件並處理相關設定: COMMANDLINE_ARGS="--exit" REQS_FILE="requirements.txt" python launch.py *  把前面步驟所下載的模型檔案,搬移到 SDWebUI檔案目錄/models,例如 clone 到 /home/user/stable-diffusion-webui 的話,就把模型檔複製到 /home/user/stable-diffusion-webui/models 下。 * 執行以下指令,等待跑完以後,畫面應該會顯示一組 xxx.gradio.xxx 的網址,可以讓自己或朋友連進來玩(網址 72 小時內有效)。如果只是自用的話,也可以用 localhost 的網址開啟服務: COMMANDLINE_ARGS="--share --gradio-debug" REQS_FILE="requirements....

[野人獻曝] Google App Engine ...... 的踩雷

最近因為要把用 Go 寫的一些 API 搬到專用平台跑又不想花錢, 想到 App Engine 有免費方案, 所以看了一下就先搬一兩隻進去跑了一個禮拜後, 昨天好奇瞄了一下帳單後大吃一斤, 發現才跑一個星期就有 16 鎂的帳單! 再仔細翻一下文件發現這其中的奧秘...... App Engine 分成兩種運作環境, 一為標準,另一個則為彈性。 前者有提供免費方案,依照選擇的類型不同,可能會有一天 28 或 9 個的免費時數可用; 後者完全沒有免費方案,一開下去就立刻算錢。 而我用的正是彈性,所以一開下去就馬上燒錢 Orz 話說回來了,到底標準和彈性環境有什麼差別? 標準環境的特色: 使用的程式語言版本基本按照 App Engine 要求。以 Go 為例,他該死的就只支援到 1.16 ,想用 1.17 以上的版本,你只能使用彈性環境。 有免費方案(不是重點 運作系統規格只有籠統的 F1 / B1 這種讓你選,就算想要記憶體多一點你也只能選更高的等級。 AutoScaling 只能設定標準由 App Engine 自行控制 想在運作環境裝一些額外的東西嘛......應該是不行。 彈性環境的特色: 可以自己寫 Dockerfile ,所以要什麼東西用什麼語言環境,你自己決定 沒有免費方案(依然不是重點 運作所需的 CPU 核心和記憶體數量可以自訂,只要符合基本要求即可 AutoScaling 機制可以手動也可以自動控制 可以 SSH 登入,想查什麼東西還蠻方便的說 所以你知道為什麼彈性環境沒有免費方案了吧(眼神死 ====================== 不過根據使用和昨天翻文件下來, 我覺得 App Engine 彈性環境遠比 AWS 的 ECS Fargate 更懶人包。 前者只需要專注在程式撰寫和設定所需運作的環境,基本上沒什麼事要做了; 但後者除了上述的東西外, 還需要自己設定從 VPC / Security Group / Load Balancer 等一狗票東西, 老實說還挺麻煩的。 ====================== 不過地雷還是有, 在寫 App Engine 的 app.yaml (運作環境設定檔)時, 關於 auto_scaling 的相關設定必須要特別注意, 如果沒特別宣告的話, 會讓你的服務可能一開始就開出兩個 instance 運作...